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Abstract

It’s challenging work to identify disease-causing genes from the next-generation sequencing (NGS) data of patients with Mendelian
disorders. To improve this situation, researchers have developed many phenotype-driven gene prioritization methods using a
patient’s genotype and phenotype information, or phenotype information only as input to rank the candidate’s pathogenic genes.
Evaluations of these ranking methods provide practitioners with convenience for choosing an appropriate tool for their workflows,
but retrospective benchmarks are underpowered to provide statistically significant results in their attempt to differentiate. In
this research, the performance of ten recognized causal-gene prioritization methods was benchmarked using 305 cases from the
Deciphering Developmental Disorders (DDD) project and 209 in-house cases via a relatively unbiased methodology. The evaluation
results show that methods using Human Phenotype Ontology (HPO) terms and Variant Call Format (VCF) files as input achieved better
overall performance than those using phenotypic data alone. Besides, LIRICAL and AMELIE, two of the best methods in our benchmark
experiments, complement each other in cases with the causal genes ranked highly, suggesting a possible integrative approach to
further enhance the diagnostic efficiency. Our benchmarking provides valuable reference information to the computer-assisted rapid
diagnosis in Mendelian diseases and sheds some light on the potential direction of future improvement on disease-causing gene
prioritization methods.

Keywords: benchmarking, gene prioritization, HPO, Mendelian diseases

Introduction
Mendelian diseases, or so-called genetic disorders,
impact about 8% of the population in the world [1]. The
successful deciphering of the human genome accelerates

human cognition of the association between genes and
Mendelian diseases. The next-generation sequencing
technology brought a new dawn to the field of Mendelian
disease molecular diagnosis due to its high throughput
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in sequencing DNA fragments. Ng SB and his colleagues
used whole-exome sequencing (WES) to firstdiscover
the causal gene of a Mendelian disease called Miller
syndrome in 2010 [2]. Since then, WES and whole-
genome sequencing (WGS) are widely used to seek or
identify disease-causing genes (variants) in patients with
congenital abnormalities. However, the average positive
diagnosis rates of these two approaches are 36 and 41%
respectively [3], mainly because the molecular basis of
a considerable part of the known Mendelian diseases
is still unclear [4]. In the meantime, novel disease-gene
associations are being identified every year due to the
perseverance of the whole scientific community [5].
To date, about 5800 single-gene disorders caused by
roughly 4000 genes are diagnosable at a molecular level
according to the statistics in OMIM (https://omim.org/
statistics/geneMap).

In NGS-based molecular diagnosis, finding the true
causal variants among hundreds of thousands of
variants is timeconsuming. Researchers have devel-
oped numerous algorithms or software to predict the
pathogenicity of the variants [6]. These genotype-
based computational predictive tools could be classified
into three categories [7]: (i) function-prediction meth-
ods that predict the probability of a given missense
variant leading to dysfunction of the protein. SIFT
[8], PolyPhen-2 [9] and MutationTaster [10] could be
representative of this kind of method; (ii) conserva-
tion methods including PhyloP [11], SiPhy [12] and
GERP++ [13] measure the conservativeness of a given
nucleotide site across multiple species; (iii) ensem-
ble methods that create multiple models and then
combine them to produce results which are usually
more accurate than that of a single model. CADD [14], M-
CAP [15], and REVEL [16] all belong to this kind of method.
Until now, genotype-based predictions and annotations
have been an indispensable procedure for common
variants filtration and candidate variants selection.

Initiated in 2007 [17], the Human Phenotype Ontology
(HPO) is a standardized vocabulary of phenotypic
abnormalities containing about 13 000 terms associated
with more than 7000 diseases and is increasingly being
adopted as a standard for clinical synopsis by interna-
tional organizations, worldwide clinical labs especially
those focusing on genetic disorders and numerous
biomedical resources, guidelines, and software [18]. The
expansion and optimization of HPO terms directly pro-
moted the emergence and development of phenotype-
based gene prioritization methods. These methods
usually compare the phenotype of a patient with a
curated knowledge base that consists of associations
between phenotypes, genes and diseases, and then give
lists of prioritized candidate genes. The phenotype-based
gene prioritization method could be divided into two
kinds according to the input. Those using both genotype
and phenotype information of a patient as input include
eXtasy [19], Phevor [20], Phen-Gen [21], PHIVE [22], PhenIX

[23], Exomiser [24], OVA [25], VarElect [26], Omimexplorer
[27], QueryOR [28], PDR [29], PhenoVar [30], DeepPVP
[31], PhenoPro [32], Phenoxome [33], Xrare [34], eDiVA
[35], MutationDistiller [36], AMELIE [37] and LIRICAL
[38]. Tools accepting only HPO (s) include Phenomizer
[39], Phenolyzer [40], Phrank [41], PhenoRank [42],
HANRD [43], GADO [44] and Phen2Gene [45]. Driven by
phenotypic features, these in silico prioritization methods
substantially improve the performance of NGS analytic
pipelines in the identification of disease-causing genes
[46].

Data for benchmarking on phenotype-driven gene pri-
oritization methods should contain as many real patient
cases as possible, each with a single diagnosed causal
gene through a stringent assessment procedure for gene
pathogenicity and expert-curated HPO terms from the
medical record or other clinical information [45]. More-
over, for methods using both phenotype and genotype as
input a VCF file produced by a bioinformatic pipeline is
required. Methods to be evaluated are run using these
real cases and whether a method can properly rank the
causal genes highly could simply be regarded as an indi-
cation of performance for the evaluation. Bone et al. [47]
evaluated the performance of Exomiser using simulated
and real data from the National Institutes of Health
Undiagnosed Diseases Program (UDP) and found that
Exomiser ranked the causative variants within the top
10 variants for all 11 previously diagnosed cases. Pengelly
et al. [48] evaluated the performance of PhenIX, Exomiser,
OVA and eXtasy using 21 exomes with known causal
variants identified by traditional clinical evaluation and
concluded that PhenIX was the most effective method,
ranking the causal variant within the top 10 in 85% of
total cases. Ebiki et al. [49] evaluated the performance
of PhenIX, hiPHIVE, Phen-Gen and eXtasy using both
simulated data of 100 diseases and real in-house data
of 20 Japanese patients, and showed the detection rates
of the top most causal variant were 71.4% for PhenIX
and 65.0% for hiPHIVE. Cipriani et al. [50] evaluated the
performance of Exomiser using 134 cases with a range
of rare retinal disorders and known causal variants and
reported that Exomiser ranked the causal variants as the
top candidate in 74% of total cases and top five in 94%.

These pioneering benchmarking works have limita-
tions in the amount of both methods for benchmarking
and samples for the evaluation. Thus, these results may
miss some up-to-date competitive methods and also may
not reflect the true performance of the evaluated meth-
ods because of the limited sample size. Based on this
situation, we conducted the most comprehensive bench-
marking research that evaluated 10 carefully selected
methods by using 305 cases from the DDD project [51]
and 209 in-house cases from Changsha KingMed Center
for Clinical Laboratory (CKCCL) via a relatively unbi-
ased methodology, aiming at providing valuable refer-
ence information to the computer-assisted rapid molec-
ular diagnosis in Mendelian diseases.

https://omim.org/statistics/geneMap
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Materials and method
Datasets curation
For this benchmarking research, phenotypic and geno-
typic data of 305 positive-diagnosed patients with
neurodevelopmental disorders and congenital anoma-
lies in the DDD project [51] and an in-house cohort
representing a wide range of phenotypic abnormalities
were compiled respectively. DDD project dataset with
accessions of EGAD00001001355 (VCF files of 1133 trios)
and EGAD00001001413 (HPO terms of 1133 trios) was
downloaded via European Genome-Phenome Archive
(EGA) [52] download client application with authoriza-
tion. The list file, containing a single causal gene of each
proband, was obtained by additional application. Each
input VCF file in our in-house dataset was generated
via BWA-GATK bioinformatic pipeline after the exonic
DNA fragments of the blood sample were captured using
xGen™ Exome Research Panel kit and sequenced by
Illumina Nextseq 550 sequencer.

Performance evaluation
Each method was run using default parameters described
in its users manual or official website. For each case in
the two datasets, the exact rank of the known causal
gene was recorded for each method. The proportions of
cases with causal genes ranked in top-1, and within top-
5, -10,-20,-30,-40 and -50 were calculated respectively for
each method.

Statistical visualization
The cumulative distribution function (CDF) curve, bar
plot, lollipop chart and pie plot presented in this work
were performed by using the ‘ggplot2’ package in R soft-
ware (version 4.0). The Venn diagrams were plotted using
the ‘venneuler’ package in R software. The distribution
plots illustrate the percentage of cases with causal genes
ranked in top-1, and within top-5, -10, -20, -30, -40 and -50
by each method. The CDF plots illustrate the percentage
of cases with causal genes ranked within the top k by
each method. k could be any integer between 1 and 50
(inclusive) and this cumulative display is better for the
visualization of results generated under continuously
changing conditions than the regular distribution plots.
The bar plots illustrate the relative proportion of each
group involving cases with causal genes ranked within
a designated range.

Results
Overview of curated datasets
and selected methods
We benchmarked the gene prioritization performance of
a total of 10 phenotype-based methods for Mendelian
diseases based on two curated datasets, including the
DDD dataset (N = 305) and an in-house KingMed Chang-
sha Genetic Diseases (KMCGD, N = 209) dataset (Figure 1).
DDD dataset is recognized as the gold standard data of
developmental disorder research. A total of 305 proband

cases were selected for this benchmarking and each
of them carried a single nucleotide variant (SNV) or
insertion and deletion (INDEL) causal variant which was
rated as ‘definitely pathogenic’ by the DDD project. On
average, each case in the final set was characterized
by 7.5 phenotypic terms and the corresponding VCF file
contained 100 033 variants (Table 1). In addition to the
DDD dataset, we built a real-world clinical dataset by
collecting 209 patients with a wide range of syndromes
as an additional cohort for benchmarking. The recruited
patients who received molecular diagnoses of the WES
approach at CKCCL between 2018 and 2021 were chosen
according to these three criteria: (i) the patient consented
to providing his/her genotype and phenotype informa-
tion for research purposes; (ii) the sequence variant inter-
pretation procedure was performed stringently under the
American College of Medical Genetics and Genomics/As-
sociation for Molecular Pathology (ACMG/AMP) guide-
lines [53] and its refinement and updated recommenda-
tions [54–57] and a single Sanger-confirmed pathogenic
gene (Supplementary Table 1) was reported in the final
clinical interpretive report; (iii) all the HPO terms of the
case (Supplementary Table 1) were assigned unambigu-
ously after a manual investigation of the patient’s med-
ical record by one of the four well-trained and certified
genetic analysts and reviewed independently by another
two senior genetic analysts. Any ambiguous term was
removed and this ‘putting quality before quantity’ crite-
rion made the average number of HPO terms per case at
2.0. The average number of variants in the original input
VCF files of the KMCGD dataset was 83 587 (Table 1).

About 30 software or algorithms for causal-gene
prioritization of Mendelian diseases developed in the last
decade were evaluated preliminarily (Supplementary
Table 2), and 10 of them were selected for this bench-
marking (Table 2) according to whether the approach
is available currently, updated periodically and free for
academic use. The designated software used for this
benchmarking work could be divided into two categories:
those using a VCF file and HPO(s) as input (‘HPO + VCF’
methods) including PhenIX [23], Exomiser [24], DeepPVP
[31], Xrare [34], AMELIE [37] and LIRICAL [38]; and
software accepting only HPO(s) (‘HPO-only’ methods)
including Phenolyzer [40], HANRD [43], GADO [44] and
Phen2Gene [45]. It should be pointed out that AMELIE
could be run using HPO + VCF mode or HPO only mode
(hereinafter referred to as ‘AMELIE_HPO’) and the perfor-
mance of both modes was evaluated respectively in this
research.

PhenIX [23] filtered and ranked the candidate’s genes
according to the combination of a variant score which
indicated variant rarity, pathogenicity and phenotype
score representing the potential clinical relevance of the
gene harboring the variants. Exomiser [24] comprised
a suite of algorithms including PhenIX mentioned
above. As with the default prioritization called hiPHIVE,
the phenotypic similarity was calculated with human
phenotype data as well as mouse and zebra-fish data,

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
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Figure 1. Illustration of study workflow. Flowchart of data collection and method implementation in this work. DDD patient cohort includes 305 cases
with developmental disorders (represented as light blue) while the in-house KMCGD patient cohort involves a total of 209 cases with a wide range of
syndromes (represented as various colors). Then, curated HPO terms and a VCF file of each case in both cohorts are imported into six ‘HPO + VCF’
prioritization methods. Additionally, curated HPO terms of each case are imported into five ‘HPO-only’ prioritization methods. In particular, AMELIE is
run in both ‘HPO + VCF’ mode and ‘HPO-only’ mode(AMELIE_HPO). Finally, for each case, the ranking position of the known causal gene in the gene list
output by each method is recorded, based on which the performance of each method is evaluated.

Table 1. Overview of the datasets used in this work; the basic information, gender composition, age composition, frequent causal
genes and disease subgroup composition of the DDD and KMCGD dataset

DDD KMCGD

Basic information Size 305 209
Average HPO amount 7.5 2.0
Average variant amount 100 033 83 587

Gender Male 141 (46.2%) 125 (59.8%)
Female 164 (53.8%) 84 (40.2%)

Age (years) 0–1 3 61
1–7 148 30
7–18 154 51
18–65 – 65
65+ – 2

Gene (frequency) >9 ARID1B (11) ATP7B (37)
9 – SRD5A2
8 MED13L –
7 ANKRD11, SYNGAP1 –
6 KCNQ2, SATB2, SCN2A UGT1A1
5 CTNNB1, DDX3X, PPP2R5D, STXBP1 PAH

Developmental disorder 305 51
Abnormality of Metabolism and Homeostasis – 21
Abnormality of the Digestive System – 26
Abnormality of the Nervous System – 22
Abnormality of Multiple Systems – 48
Abnormality of Other Systems – 41

allowing novel candidate genes discovery. LIRICAL [38]
required the library files of Exomiser. It calculated the
likelihood ratio(LR) for each phenotype and genotype
input and measured how much any individual pheno-
typic observation had contributed to the prioritization
result. DeepPVP combined automated inference with
deep neural networks to classify and identify the likely
causative variants [31]. Xrare was developed based on a
phenotype-similarity scoring method. The Xrare model
was trained and validated using known pathogenic
variants from ClinVar. AMELIE was an online application
helping Mendelian diagnosis by matching patient pheno-
type and genotype to primary literature [37]. Via parsing
a huge amount of abstracts and full-text articles in

PubMed, AMELIE used natural language processing (NLP)
to construct a homogeneous knowledge base for causal
gene prioritization. Phenolyzer [40] and Phen2Gene
[45] came from the same lab. The former used prior
information to implicate genes involved in diseases with
a machine learning model. The latter was an enhanced
version of the former and calculated a prioritized gene
list based on a probabilistic model. HANRD was a
prioritization approach using heterogeneous networks
in the context of rare diseases [43]. Researchers of this
software developed a graph convolution-based technique
to infer new phenotype-gene associations. GADO [44]
predicted which genes cause specific phenotypes based
on the public RNA sequencing dataset.
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Table 2. Overview of the methods evaluated in this work; the brief features, running time, version numbers and the released time of
the 10 methods

Input Method Feature Time Version Year

HPO + VCF PhenIX Computational phenotype analysis 103 s 1.16 2014 [23]
Exomiser Cross-species phenotype comparison 35 s 12.1.0 2015 [24]
DeepPVP Deep learning 280 s 2.1 2019 [31]
Xrare Machine learning 260 s pub:2015 2019 [34]
AMELIE Text mining and natural language processing 94 s Oct 5, 2020 2020 [37]
LIRICAL Likelihood ratio framework 31 s 1.3.0 2020 [38]

HPO only Phenolyzer Machine learning 107 s 0.4.0 2015 [40]
HANRD Heterogeneous networks and graph convolution 628 s – 2018 [43]
GADO Gene network based on transcriptome data 6 s 1.0.1 2019 [44]
Phen2Gene Probabilistic model 6 s 1.2.3 2020 [45]

The running time is tested under the default setting of each software using a VFC file (29 968 variants, size: 23.87 MB) of case NA12878 from the Genome in a
Bottle project and a set of randomly chosen HPO terms including HP:0000002 (Abnormality of body height), HP:0003020 (Enlargement of the wrists), HP:0006089
(Palmar hyperhidrosis), HP:0009023 (Abdominal wall muscle weakness) and HP:0012047 (Hemeralopia).

Benchmarking phenotype-driven gene
prioritization methods for clinical data sets
We employed the selected 10 methods to estimate pri-
oritized genes based on the two curated datasets and
evaluated the accuracy used the top 1, -5, -10, -20, -30,
-40 and -50 putative genes on all the phenotype-driven
gene prioritization tasks. As shown in Figure 2, the perfor-
mance of each method varied greatly in our benchmark-
ing experiments. In general, three methods including
LIRICAL, AMELIE and Xrare outperformed all the other
algorithms and showed a better performance across all
putative gene percentage experiments. In both DDD and
KMCGD datasets, AMELIE stood out at the top-1, -5 and
-10 experiments, while the LIRICAL method ranked the
best at the top-30, -40 and -50 experiments. Specifically,
AMELIE correctly assigned the causal gene at the very
top in 47.9% of the total 305 DDD cases and 57.9% of the
total 209 KMCGD cases (Supplementary Table 3). Besides,
AMELIE identified the causal gene within the top-5 and
-10 candidates in about 81.3 and 86.2% of the total DDD
cases and about 73.7 and 78.9% of the total KMCGD
cases. While LIRICAL captured the causal genes within
the top-30, -40 and -50 for about 94.4, 95.4 and 96.1% of
the DDD cohort, and about 86.6, 88.5 and 90.4% of the
KMCGD cohort (Supplementary Table 3). As with the top-
20 experiment, AMELIE outperformed LIRICAL in DDD
dataset (90.5 versus 89.8%) but LIRICAL did better in
KMCGD dataset (84.2 versus 81.3%). Xrare ranked third
across all the different settings in the DDD dataset and
three of seven experiments in the KMCGD dataset. The
performance of Exomiser and PhenIX software followed
that of these three methods under most circumstances
but exceeded that of both AMELIE and Xrare at the top-
30, -40 and top-50 settings in the KMCGD dataset. The
other six methods including DeepPVP and all five ‘HPO
-only’ methods (Phenolyzer, HANRD, GADO, Phen2Gene,
and AMELIE_HPO) had an overall lower performance
on all the benchmarking settings. The hits percentage
of these six methods were all lower than 50% even at
the top 50 putative genes based on the two curated
datasets.

Next, we evaluated the performance of all methods
using a random synthetic dataset. A total of 50 artificial
cases were synthesized for this simulation experiment
(Supplementary Table 4). Each case consisted of (i) a
VCF file randomly chosen from the healthy parents
of the ‘original’ DDD dataset which contains a totally
of 1133 trios [51]; (ii) fake phenotypic features with
3 ∼ 12 HPO terms randomly chosen from the official
HPO pool; (iii) a randomly chosen low-frequency (<1%
in gnomAD v2.1.1 Exomes) nonsynonymous mutation
which was inserted into the corresponding VCF file
as the hypothetical causal variant. In the evaluation
result for these 50 negative control cases, all methods
showed a very poor performance (Supplementary
Figure 1), with some methods capturing few hits by
chance.

Performance evaluation based on
the cumulative distribution function
The expected value of performance alone was insuffi-
cient to properly evaluate an algorithm as it discarded
information about the variance in performance. A more
useful representation of performance could be obtained
by the cumulative frequency analysis of the performance
of overall sources of variance, so we investigated the per-
formance of phenotype-driven gene prioritization meth-
ods based on the cumulative distribution function (CDF)
next. Consistent with the above results, five ‘HPO + VCF’
methods including LIRICAL, AMELIE, Xrare, Exomiser and
PhenIX were far more effective than DeepPVP and all
‘HPO-only’ methods in prioritizing disease-causing genes
(Figure 3A and B). LIRICAL and AMELIE were the two best
performers, and then we made a prioritizing genes com-
parison between them (Figure 3C). At the top-1 setting,
the causal genes of 146 DDD cases and 121 KMCGD
cases were correctly put at the very top of the final gene
lists generated by AMELIE. In LIRICAL, the corresponding
numbers were 125 and 107 respectively. However, the
common case of the two software at this setting were
only 67 and 78 in DDD and KMCGD cohort respectively
(Figure 3C). AMELIE provided 79 and 43 additional cases

https://ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA12878/Nebraska_NA12878_HG001_TruSeq_Exome/NIST-hg001-7001-gatk.vcf
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
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Figure 2. Distribution plots of performance evaluation results. Distribution plots of performance evaluation results of 10 phenotype-driven gene
prioritization methods on the DDD (A) and KMCGD (B) datasets. The distribution plots illustrate the percentage of the cases with causal genes ranked
in top-1 and within the top-5, -10, -20, -30, -40 and -50 by each method. Each method is represented by a different color.

than the intersections with casual genes ranked at the
very top, while LIRICAL presented 58 and 29. The sym-
metric differences were still considerable at top-5 and
top-10 settings but became inconspicuous in the follow-
up settings. In the final top-50 settings, the cases of
the two software almost overlapped (Figure 3C). These
findings suggested that LIRCIAL and AMELIE could com-
plement each other in the performance to rank causal
genes highly.

Methods using only phenotypic features based on
HPO terms had an overall poorer performance than
‘HPO + VCF’ approaches, suggesting the disadvantage
of the ‘HPO-only’ scoring method in evaluating causal
genes. This was in line with expectations because
the VCF file provided genotype information to greatly
reduce the ranking scope. AMELIE_HPO outshone other
methods of the same category at all ranking levels in
the DDD dataset. It puts the true gene in top-1, and
within top-5, -10, -20, -30, -40 and -50 for about 4.3,
10.8, 14.4, 23.9, 29.8, 34.4 and 37.7% of the total cases
(Supplementary Table 3). For the KMCGD dataset, Phe-
nolyzer and Phen2Gene, whose CDF curves twisted each
other, had an outstanding performance in phenotype-
only methods. This intertwined situation also happened
in the DDD dataset, suggesting similar performance of
the two methods.

Performance evaluation across
different disease subgroups
In the final step, we explored whether the complexity
and variability of disease patterns could affect the
performance of each prioritization method. According
to the HPO constitutions per case and the official
HPO hierarchy, KMCGD cases were further divided
into five disease subgroups including Abnormality of
Metabolism & Homeostasis (N = 21, 10.0%), Abnormality
of the Digestive System (N = 26, 12.4%), Abnormality
of the Nervous System (N = 22, 10.5%), Abnormality of
Multiple Systems (N = 48, 23.0%), Abnormality of Other
Systems (N = 41, 19.6%) and an unofficially-defined
subgroup called Developmental Disorder (N = 51, 24.4%)
(Figure 4A, Supplementary Table 1). The subgroup of
Abnormality of Multiple Systems involved cases with
HPO terms classified into at least two systems, and
the subgroup of Abnormality of Other Systems was a
collection of those small groups (less than 20 cases) of
other systems such as the cardiovascular system. The
whole frequency distribution of the HPO parent classes
(defined by the official HPO hierarchy) for the KMCGD
datasetis displayed in Figure 4B. As seen in Figure 4C,
these performance results showed the five best methods
mentioned above (LIRICAL, AMELIE, Xrare, Exomiser
and PhenIX) still had an overall superior performance

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
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Figure 3. CDF and bar plots of performance evaluation results. CDF plots (A) and bar plots (B) of performance evaluation results of 10 phenotype-driven
gene prioritization methods on the DDD (left) and KMCGD (right) datasets. The CDF plots illustrate the percentage of the cases with causal genes ranked
within the top k by each method. k could be any integer between 1 and 50 (inclusive). Each method is represented by a different color. The bar plots
illustrate the relative proportion of each group involved cases with causal genes ranked within a designated range. Each group is represented by a
different color. (C) The overlapping set of cases with causal genes ranked in top-1 and within top-5, -10, -20, -30, -40 and -50 by LIRICAL and AMELIE in
DDD (left) and KMCGD (right) dataset.

for the various disease subgroups when compared
with other methods, but the prioritization accuracy of
each method differed among disease subgroups and
some methods even showed a preference. LIRICAL
performed best in the subgroup of Development Disorder,
Abnormality of the Nervous System and Abnormality of

Other Systems. Especially in the Developmental Disorder
phenotypic group, LIRICAL held a significant lead over
all other methods. These findings, combined with the
performance evaluation in the DDD dataset, suggested
that LIRICAL was good at identifying the causal gene in
developmental disorders. For the disease subgroups of
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Figure 4. Performance evaluation across different disease subgroups. (A) Frequency distribution of the HPO parent classes for the KMCGD dataset. The
HPO terms of each case in the KMCGD dataset are assigned to HPO parent classes according to the official HPO hierarchy and some cases involve more
than one kind of HPO parent class. (B) Disease subgroup composition of KMCGD dataset. Case amount and proportion are tagged for each subgroup. (C)
CDF plots of performance evaluation results of 10 phenotype-driven gene prioritization methods on each subgroup of the KMCGD dataset.

Abnormality of the Digestive System and Abnormality
of Multiple Systems, the performance of the best five
was very close. Interestingly, the evaluation result for
the Abnormality of Metabolism & Homeostasis subgroup
had a distinct pattern when compared with other disease
subgroups. The PhenIX method ranked best for this
subgroup while the performance of the LIRICAL method
was not prominent.

Discussions
Timely and effective diagnosis for patients with Mendelian
diseases will bring chances for appropriate approaches to
clinical management and treatment. Computer-assisted
prioritization methods could substantially improve
the performance of NGS-based analysis pipelines to
identify disease-causing genes [46]. Objective evaluation
of these methods could provide valuable reference
information to practitioners, providing convenience

for choosing an appropriate tool for their workflows.
Previously published reports [47–50] benchmarked
different prioritization methods or a single approach
based on real and/or simulated data, but the overall
scales of these researches were limited. Here we provided
more comprehensive benchmarking analyses using
two large-scale datasets with more than 500 real-
world patient cases to investigate the performance of
as many as 10 methods including some prestigious
software and newly developed approaches. Patients in
the DDD dataset are undiagnosed children and adults
in the UK with developmental disorders while patients
in KMCGD dataset are Chinese with a wide range of
genetic abnormalities. Thus, we believe that this broader
evaluation based on the abundant number of cases
could minimize or avoid bias derived from the possible
preference for a population or disease-type in a certain
method. Three remarkable findings were observed in
our results firstly, the methods using HPO terms and
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VCF files as input performed better overall than those
using phenotypic data alone, which indicated that
providing both genotype and phenotype information of
a patient to causal-gene prioritization methods would
probably get a more effective diagnosis result. Secondly,
as the two best performers, LIRICAL and AMELIE had
obvious different sets to each other in cases with the
causal genes ranked highly in both DDD and KMCGD
datasets, suggesting that an integrative approach may
further facilitate the pinpoint of targets. Thirdly, disease
preference was observed in some methods during the
evaluation of disease subgroup data, but more data
and further sophisticated experiments are required to
support this finding.

In our benchmarking work, the difference between the
shapes of the CDF-curve bunch of the five ‘HPO + VCF’
methods in the two datasets was significant. The
bunch was more compact in the DDD dataset. This
phenomenon is probably due to the more detailed
phenotypic records in the DDD dataset which increase
the discriminative power of the experiments, and more
evidence is needed to support this hypothesis. When
comparing the results of each method, we found that
some software failed in a few of the provided cases,
which might be due to the untimely update of the
internal HPO database, hence these software could
not profit from parts of the regularly updated HPO.
Future updates of the HPO database of these software
may fix this issue. Besides, we found that causal genes
including CPLANE1, H4C3, CERT1 and NEXMIF related to
six cases of the DDD dataset were represented as their
alias (C5orf42, HIST1H4C, COL4A3BP and KIAA2022) in
AMELIE and Xrare when checking the gene ranking lists.
Improper uses of gene names might slightly influence
the exact performance of these two methods and
we’ve contacted the authors about this issue. Moreover,
we evaluated all methods by using the default settings
and minor modifications, while adjusting these settings
for a specific dataset might improve the performances.
Note that the HPO terms were manually curated by
curators from different institutions. Thus, the differences
in both curation criteria, methods and styles, and the
background experience and levels of expertise of the
curators between the DDD project and CKCCL could
bring unavoidable deviations to the evaluation results.
For example, some phenotypic descriptions might
introduce a few noisy HPO terms due to the relatively
looser curation style, and these might eventually affect
the ranking performance of some software.

To prioritize disease-causing genes, AMELIE parses
a huge number of primary literature to construct
a knowledge-based storing the relationship between
genes, variants and phenotypes [37].Thus, AMELIE
tends to have an upper hand in identifying targets for
published cases (DDD dataset) over unpublished ones
(KMCGD dataset). Therefore, we investigated whether
the published cases could lead to bias to the performance
evaluation of AMELIE. The professional version of the

Human Gene Mutation Database (HGMD) provides
up-to-date information on human inherited gene muta-
tions and mutations in the database are manually
curated from the scientific literature [58]. So, we removed
156 HGMD (version: Pro-2021.2) included cases from the
DDD dataset and used the rest of 149 unpublished DDD
cases to re-evaluate the performance of each method.
The result showed an almost-unchanged overall trend
for the performances of all methods but a slightly
lower performance of AMELIE in the top-20 experiment
(Supplementary Figure 2). Specifically, it was consistent
with the result using the whole DDD dataset (305 cases),
AMELIE ranked first at the top-1, -5, and -10 experiments
and second at the top-30, -40 and -50 experiments.
However, when compared with the result using the
whole DDD dataset, AMELIE was surpassed by LIRICAL
in the top-20 experiment. According to the results of
these extensive analyses, we believe that whether or
not the input DDD case is published, it would not bring
substantial bias to the performance evaluation of the 10
methods including AMELIE for benchmarking.

Currently, accurately and efficiently extracting phe-
notype from patients’ medical records remains labor-
intensive. Artificial intelligence (AI) especially NLP has
been applied to automatically extract and normalize
HPO terms from electronic health records of patients and
shows great power [59–64]. Impressively, PEDIA [65] has
tried NGS data interpretation with portrait photographs
of patients. This research uses deep-learning-based facial
analysis to quantify the phenotypic similarity and proves
the possibility to use image analysis to obtain HPO terms
from patients’ photographs and/or medical images. The
evaluation of automatic HPO extractors will be one of our
possible research directions in the future. In addition, the
interpretation of non-coding variants still constitutes a
major challenge in the application of NGS in Mendelian
disease. Genomiser [66] as the Exomiser’s extended
version, is an analysis framework to associate variants in
the non-coding genome to specific Mendelian diseases,
setting an example to meet the challenge. As the
disease-gene knowledge base of human beings expands
and bioinformatic technology develops, more tools will
emerge to rank the causal variants in both coding and
non-coding regions for genetic disease diagnosis. We will
compare the prioritization performance of the top meth-
ods in our benchmarking work with those well-designed
new tools in our future works. We believe our compre-
hensive evaluation work could provide a guideline for
researchers to select and apply suitable prioritization
methods in their analysis frameworks and shed some
light on the potential direction of future improvement
on disease-causing gene prioritization methods.

Key Points

• Comprehensive benchmarking analyses using two large-
scale datasets with totally more than 500 real-world
cases have been conducted to evaluate the performance

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbac019#supplementary-data
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of as many as 10 phenotype-driven gene prioritization
methods.

• Methods using HPO terms and VCF files as input have
shown better performance than those using phenotypic
data alone in causal gene prioritization.

• The two best performers LIRICAL and AMELIE had obvi-
ous different sets to each other in cases with the causal
genes ranked highly, and this complementarity suggests
a possible integrative approach to further enhance the
diagnostic efficiency.
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